Triangulynes A-H and Triangulynic Acid, New Cytotoxic Polyacetylenes from the Marine Sponge Pellina triangulata

J in-Rui Dai, Yali F. Hallock, J ohn H. Cardellina II, Glenn N. Gray, and Michael R. Boyd*
Laboratory of Drug Discovery Research and Development, Developmental Therapeutics Program, Division of Cancer Treatment, Diagnosis and Centers, National Cancer Institute, Building 1052, Room 121, Frederick, Maryland 21702-1201

Received March 18, 1996^{*}

Abstract

Nine new polyacetylenes, triangulynes A-H (1-8) and triangulynic acid (9), have been isolated from the marine sponge Pellina triangulata (Oceanapiidae) through cytotoxicity-guided fractionation. Structural elucidations and stereochemistry assignments were based on chemical and spectral studies.

There have been limited chemical studies of marine sponges of the genus Pellina. ${ }^{1-3}$ F or the present study, we selected an extract of the previously uninvestigated marine sponge Pellina triangulata Desqueyroux-Faundez (Oceanapiidae), which had shown an interesting profile of differential cytotoxicity in the NCI 's primary antitumor screen. ${ }^{4-7}$ The leukemia and col on tumor lines were, in general, more sensitive to the extract than the other tumor subpanels. Bioassay-directed fractionation of the organic extract has resulted in the isolation of nine cytotoxic polyacetylenes, triangulynes A-H (18) and triangulynic acid (9). The absolute configurations of 1, 2, 6, 8, and 9 were determined by the modified M osher method.

Results and Discussion

Samples of P. triangulata were collected at Kuop Atoll, Truk Island, Micronesia. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ extract of P. triangulata was fractionated via an extensive solvent-solvent partition protocol ${ }^{8}$ that concentrated the cytotoxic activity in the CCl_{4} and CHCl_{3} fractions. Further separation of the CCl_{4} fraction by gel permeation on a Sephadex LH-20 column, followed by repeated reversed-phase HPLC, yielded pure triangulynes $\mathrm{A}-\mathrm{H}(\mathbf{1}-\mathbf{8})$, while purification of the CHCl_{3} fraction with more polar solvent mixtures led to isolation of triangulynic acid (9).

Triangulyne A (1) was isolated as a major constituent from the CCl_{4} fraction. The molecular formula of triangulyne $A, \mathrm{C}_{32} \mathrm{H}_{46} \mathrm{O}_{3}$, as derived from HRFABMS, indicated 10 degrees of unsaturation. Its ${ }^{1} \mathrm{H}$ NMR spectral data showed the presence of two disubstituted double bonds [$\delta 5.90,5.58,5.32(2 \mathrm{H})$], an oxymethylene ($\delta 4.32$), two oxymethines ($\delta 4.81$ and 4.40), and a terminal acetylene ($\delta 2.54$). In a ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY experiment, the olefinic proton signals at $\delta 5.90$ and 5.58 showed correlations to the oxymethine at $\delta 4.81$ and a methylene at $\delta 2.04$. The signal at $\delta 4.81$ was, in turn, correlated to the terminal acetylene proton at $\delta 2.54$ (J $=2 \mathrm{~Hz}$), thus providing partial structure \mathbf{A} (Figure 1). The configuration of the allylic double bond was assigned as E based on the vicinal coupling constant of the ol efinic protons ($J=15 \mathrm{~Hz}$).

The UV absorption maxima ($\lambda_{\max } 257,242,230,204$ mm) and molar absorptivities most closely resembled those of a triyne chromophore. ${ }^{9}$ That observation and

[^0]HMBC correlations from $\delta 4.32$ to the acetylene carbons at $\delta 77.5$ and 69.7 , and from $\delta 4.40$ to carbons at $\delta 68.8$ and 80.5, led to the assignment of partial structure B (Figure 1). The remaining atoms were accommodated by substructure C (Figure 1), derived from COSY relationships ($\delta 5.32$ and $\delta 1.99$) and HMBC correlations between the olefinic protons at $\delta 5.32$ and the allylic carbons ($\delta 27.0$); the Z geometry of the olefin was assigned on the basis of the ${ }^{13} \mathrm{C}$ NMR chemical shifts of the allylic carbons. ${ }^{10}$ Fragment ions at $\mathrm{m} / \mathrm{z} 271[\mathbf{B}+$ $\left.6 \mathrm{CH}_{2}+\mathrm{CH}=\mathrm{CHCH}_{2}\right]$ and $261\left[\mathbf{A}+8 \mathrm{CH}_{2}+\mathrm{CH}=\right.$ CHCH_{2}] in the EIMS, which corresponded to the α-cleavages at the positions allylic to the isolated double bond, indicated the presence of the olefin at C-16. Ozonolysis of 1, followed by treatment with $\mathrm{CH}_{2} \mathrm{~N}_{2}$, resulted in the formation of the dimethyl ester of dodecanedioic acid, thus confirming the location of the isolated Z double bond. Triangulyne A was therefore identified as 1,8,30-trihydroxydotriaconta-16(Z), 28(E)-diene-2,4,6,31-tetrayne (1).

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of triangulynes B and C showed features similar to those of 1. The molecular formulas of triangulyne $\mathrm{B}\left(2, \mathrm{C}_{33} \mathrm{H}_{48} \mathrm{O}_{3}\right)$ and $\mathrm{C}(3$, $\mathrm{C}_{31} \mathrm{H}_{44} \mathrm{O}_{3}$), established by HRCIMS, suggested that both compounds were homologs of $\mathbf{1}$. Analyses of NMR data, including COSY, DEPT, HMQC, and HMBC, also led to partial structures \mathbf{A}, \mathbf{B}, and \mathbf{C}. A fragment ion at $\mathrm{m} / \mathrm{z} 285\left[\mathbf{B}+7 \mathrm{CH}_{2}+\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}\right]$, observed for both 2 and 3 , suggested that $\mathrm{m}=6$; therefore a $\mathrm{C}-17$ double bond was indicated for both 2 and 3.

Triangulyne D (4), which eluted much later in the reversed-phase HPLC, gave $\mathrm{C}_{41} \mathrm{H}_{64} \mathrm{O}_{3}$ by HRFABMS. The molecular formula, in combination with ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data, indicated that 4 was a higher homolog of 1, 2, and 3. The presence of the same partial substructures A, B, and C, as revealed by detailed analyses of COSY, DEPT, HMQC, and HMBC data, further supported this assignment. As before, the location of the isolated double bond was established by analysis of mass spectral fragments (CIMS). Accordingly, fragments at $\mathrm{m} / \mathrm{z} 369\left[\mathbf{B}+13 \mathrm{CH}_{2}+\mathrm{CH}_{2^{-}}\right.$ $\mathrm{CH}=\mathrm{CH}]$ and $\mathrm{m} / \mathrm{z} 289\left[\mathbf{A}+10 \mathrm{CH}_{2}+\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}\right]$ provided evidence for the C-23 location of the isolated Z double bond.

In order to determine the absolute configuration at the carbinol centers, we employed the modified Mosher method. ${ }^{11-13}$ On the basis of the $\Delta \delta\left(\delta_{S}-\delta_{R}\right)$ values (Figure 2), the absolute configurations for $\mathbf{1}$ and $\mathbf{2}$ were 8S,30R and 8S,31R, respectively. Due to the limited

A

C

E

B

D

F

Figure 1. Partial structures with key HMBC correlations.

$\mathrm{n}=8$
$2 \mathrm{~m}=6, \quad \mathrm{n}=8$
$3 \mathrm{~m}=6, \mathrm{n}=6$
$4 \mathrm{~m}=12, \mathrm{n}=10$

9

Figure 2. Structures of 1-9. Key mass spectral fragmentations indicated for 5, 6, and 9. Mosher ester $\Delta \delta$ values (in Hz) indicated in parentheses for $\mathbf{1}, \mathbf{6}, \mathbf{8}$, and $\mathbf{9}$.
amount of $\mathbf{3}$ and 4, their stereochemistry was not independently determined. It is likely that they have the same configurations as $\mathbf{1}$ and 2, since all four compounds had the same sign and magnitude of optical rotation.

TriangulyneE (5) anal yzed for $\mathrm{C}_{32} \mathrm{H}_{42} \mathrm{O}_{3}$ by HRCIMS. The presence of two extra degrees of unsaturation relative to triangulynes $A-D$ was consistent with the ${ }^{13} \mathrm{C}$ NMR spectra, in which an additional acetylene functionality was observed ($\delta 77.5,94.5$). In addition to substructure units \mathbf{A} and \mathbf{B}, detailed analyses of COSY and HMBC data also revealed substructure D (Figure 1). The proton signal at $\delta 5.79$ was vicinally coupled to the olefinic proton at $\delta 5.41(\mathrm{~J}=10.5 \mathrm{~Hz})$. Additionally, the acetylene carbon at $\delta 77.5$ showed

HMBC correlations to proton signals at $\delta 5.79$ (H-18) and $\delta 2.31$ ($\mathrm{H}-14$), indicating a conjugated enyne partial structure. The C-17 olefin was assigned as Z, based on the coupling constant $(J=10.5 \mathrm{~Hz})$. Partial structures A, B, and D were connected in a linear manner to give 5. The number of methylene units (m and n) was deduced as 4 and 7 , based on the observation of mass fragments $\mathrm{m} / \mathrm{z} 271$ (Figure 2) and 207 [271 $\mathrm{C}_{5} \mathrm{H}_{4}$].
The structure elucidation of triangulyneF (6) followed a similar course, as the molecular formula $\left(\mathrm{C}_{34} \mathrm{H}_{46} \mathrm{O}_{3}\right)$ obtained from HRFABMS clearly indicated that it was homologous to 5. Analyses of NMR spectral data, including COSY, HMQC, and HMBC, established the same substructure units \mathbf{A}, \mathbf{B}, and \mathbf{D}. The observation
of mass fragments $\mathrm{m} / \mathrm{z} 271$ and 207, as in 5, suggested that $\mathrm{n}=7$ and $\mathrm{m}=6$ for 6 . Additional fragments at $\mathrm{m} /$ z 309 and 245, corresponding to α-cleavages at C-21 and C-17, respectively, supported this assignment. The stereochemistry at the carbinol centers for both 5 and 6 was also determined by the modified M osher's method as $8 \mathrm{~S}, 30 \mathrm{R}$ and $8 \mathrm{~S}, 32 \mathrm{~S}$, respectively (Figure 2).

The molecular formula of the minor constituent triangulyne G (7), established by HRCIMS as $\mathrm{C}_{34} \mathrm{H}_{46} \mathrm{O}_{2}$, indicated the presence of 12 degrees of unsaturation, the same as triangulynes E and F . Although most of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR signals were similar to those of 5 and 6, one notable difference was the lack of an oxymethine signal. Instead, an additional triplet proton signal at $\delta 2.27$ was observed. HMBC correlations from $\delta 2.27$ to the conjugated acetylene carbons at $\delta 82.0$ and 64.3 revealed that a hydroxyl group was not present at $\mathrm{C}-8$. Other functional group assignments followed a parallel course as described for 1-6 to provide 7. Due to the paucity of pure 7, the chirality at C-32 was not determined.

Triangulyne H (8) was also isolated as a minor compound. Its molecular formula $\left(\mathrm{C}_{37} \mathrm{H}_{56} \mathrm{O}_{3}, \mathrm{HR}\right.$ FABMS) indicated the presence of 10 degrees of unsaturation, the same as triangulynes $A-D(\mathbf{1}-\mathbf{4})$. The ${ }^{1} \mathrm{H}$ NMR showed features similar to compounds 1-4, except for the alkyne proton signal. A new signal at $\delta 3.12$ appeared in place of the terminal acetylene proton signal at $\delta 2.55$ present in all other triangulynes. In the ${ }^{13} \mathrm{C}$ NMR spectra, a pair of olefin signals at $\delta 108.9$ (C-35) and $\delta 147.4$ (C-34) was observed in place of those ($\delta 128.3$ and 134.6) seen in substructure A. COSY, HMQC, and HMBC experiments revealed partial structure \mathbf{E} (Figure 1), along with substructures \mathbf{B} and \mathbf{C}. In partial structure \mathbf{E}, the olefin signal at $\delta 108.9$ (C35) showed HMBC correlations to $\delta 3.12$ (H-37) and the oxymethine at $\delta 4.66\left(\mathrm{H}-33, \delta_{\mathrm{C}} 70.1\right)$. The geometry of the C-34 double bond was assigned as Z on the basis of the vicinal coupling constant of 11.5 Hz . As with triangulynes $A-G$, the $\mathrm{C}-20$-isolated olefin in 8 was assigned the Z configuration on the basis of the chemical shifts of the allylic carbons ($\delta 26.7$ and 27.1). ${ }^{10}$ The location of the isolated Z double bond was deduced by analysis of mass spectral fragment ions at $\mathrm{m} / \mathrm{z} 327$ [\mathbf{B} $\left.+10 \mathrm{CH}_{2}+\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}\right]$ and $275\left[\mathrm{E}+10 \mathrm{CH}_{2}+\mathrm{CH}_{2-}\right.$ $\mathrm{CH}=\mathrm{CH}]$. The stereochemistry was determined by employing the modified Mosher method. Thus, triangulyneH (8) was 1,8(S),33(R)-trihydroxyheptatriaconta-20(Z),34(Z)-diene-2,4,6,36-tetrayne.

Triangulynic acid (9) was isolated as a white solid from the more polar CHCl_{3} fraction. In the IR spectrum, absorptions for acetylenic ($2212 \mathrm{~cm}^{-1}$) and carboxylic acid (1695 and $3400 \mathrm{~cm}^{-1}$) functionalites were observed. Following treatment with $\mathrm{CH}_{2} \mathrm{~N}_{2}$, the methylation product of 9 showed a singlet at $\delta 3.80$ integrating for three protons, confirming the presence of a carboxylic acid functional group. The constitution of 9 was deduced from the molecular formula of the methyl ester, $\mathrm{C}_{34} \mathrm{H}_{54} \mathrm{O}_{3}$, established by HRFABMS. Substructure \mathbf{F} (Figure 1), along with partial structures \mathbf{A} and C, was obtained from interpretation of ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY, DEPT, HMQC, and HMBC spectra. The Z olefinic protons ($J=10.5 \mathrm{~Hz}$) at $\delta 5.53(\mathrm{H}-4)$ and $\delta 6.24(\mathrm{H}-5)$ showed HMBC correlations to the substituted acetylene carbons ($\delta 84.6$ and 84.7), thus providing partial struc-
ture \mathbf{F}. To account for the remaining atoms, the three partial structures \mathbf{A}, \mathbf{C}, and \mathbf{F} had to be connected through methylene units to give 9. A large coupling constant (15.5 Hz) between $\delta 5.89(\mathrm{H}-29)$ and $\delta 5.58(\mathrm{H}-$ 30) led to the assignment of the E configuration at C-29, while the Z geometry at $\mathrm{C}-15$ was indicated by the carbon chemical shifts of the allylic carbons ($\delta 27.2$). Esterification with $\mathrm{CH}_{2} \mathrm{~N}_{2}$, followed by derivatization with Mosher's reagent, allowed the assignment of the 31R configuration for 9. FABMS of both 9 and its methyl ester produced a fragment ion at $\mathrm{m} / \mathrm{z} 289$ [A + $10 \mathrm{CH}_{2}+\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}$], which identified C-15 as the location of the isolated double bond (Figure 2).

Triangulynic acid showed structural similarities to the corticatic acids, recently reported from the sponge genus Petrosia. ${ }^{14}$ In a recently published summary of the 1994 U.S. -J apan Seminar on Marine Bioorganic Chemistry, Rinehart and Tachibana pointed to a preliminary report from the Schmitz group of a compound which strongly resembled triangulynic acid from P. triangulata. ${ }^{15}$

Triangulynes $\mathrm{A}-\mathrm{H}(\mathbf{1}-\mathbf{8})$ demonstrated similar in vitro cytotoxicity profiles and generally comparable overall potency against the NCI human tumor cell line panels. ${ }^{4-7}$ In general, leukemia, colon, and melanoma tumor lines showed greater sensitivity to 1-8. It is interesting to note that triangulynic acid (9) was less potent than 1-8 and did not exhibit differential cytotoxicity. In addition, the differential cytotoxicity patterns produced by the triangulynes (1-8) did not resemble or COMPARE ${ }^{7}$ to those produced by the simple $\mathrm{C}_{20}-\mathrm{C}_{23}$ enynols from Cribrochalina vasculum, ${ }^{16}$ but they did closely match that exhibited by vasculyne, a C_{43} bis-enynol from a different collection of C. vasculum. ${ }^{17}$ Repetitive testing of 1, as representative of the series, yiel ded mean panel $\mathrm{GI}_{50}, \mathrm{TGI}$, and LC_{50} concentrations of $0.5,2.0$, and $12 \mu \mathrm{M}$, respectively.

Experimental Section

General Experimental Procedures. Optical rotations were measured with a Perkin-Elmer 241 polarimeter in CHCl_{3}. UV spectra were recorded on a Beckman DU-64 spectrophotometer. FT-IR spectra were obtained on a Perkin-Elmer 267 spectrometer. High-resolution mass spectra were measured on a Finnegan MAT 90 spectrometer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Varian VXR-500 spectrometer using CDCl_{3} as solvent and internal standard $\left({ }^{1} \mathrm{H}, 7.24 \mathrm{ppm}\right.$, and ${ }^{13} \mathrm{C}$, $77.0 \mathrm{ppm})$. The number of attached protons for each carbon was determined from DEPT experiments. HPLC was performed on a Waters 600E system using a Waters 990 photodiode array detector.

Animal Material. Samples of P. triangulata Desqu-eyroux-F aundez were collected by the Coral Reef Foundation, under contract to the NCI , at a depth of 15 m on the south oceanside reef ($151^{\circ}, 6.05^{\prime} \mathrm{E}, 7^{\circ}, 0.00^{\prime} \mathrm{N}$) in Kuop Atoll, Micronesia, in September, 1992. The sponge was identified by M. Kelly-Borges; a voucher specimen is on deposit at the Smithsonian Institution Sorting Center, Suitland, MD.

Extraction and Purification. Sponge samples were kept frozen prior to extraction. The frozen sponge was ground (110.33 g) with dry ice and extracted with $\mathrm{H}_{2} \mathrm{O}$ at $4^{\circ} \mathrm{C}$; the aqueous extract was removed by centrifugation and lyophilized. The sponge residue was
also lyophilized and extracted overnight at room temperature with $\mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1:1), followed by MeOH . Solvents from the combined organic extracts were removed in vacuo to give a residue (13.13 g). A portion of this extract (5.10 g) was partitioned ${ }^{8}$ to give hexane (0.56 g), $\mathrm{CCl}_{4}(2.29 \mathrm{~g}), \mathrm{CHCl}_{3}(1.37 \mathrm{~g})$, and $\mathrm{H}_{2} \mathrm{O}(0.85 \mathrm{~g})$ fractions. The cytotoxic CCl_{4} fraction was further fractionated by Sephadex LH-20 column chromatography to afford fractions A-D. The active fractions B and D were separated by HPLC on a Rainin Microsorb C_{18} column ($5 \mu \mathrm{~m}, 1 \times 25 \mathrm{~cm}$) using $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ (93:7) as mobile phase to yield compounds $\mathbf{1}$ ($154 \mathrm{mg}, 1.73 \%$ wet weight), $\mathbf{2}(13.6 \mathrm{mg}, 0.15 \%), \mathbf{3}(7 \mathrm{mg}, 0.07 \%), \mathbf{4}(3.9 \mathrm{mg}$, $0.04 \%), 5(8.6 \mathrm{mg}, 0.08 \%), \mathbf{6}(14.6 \mathrm{mg}, 0.16 \%), \mathbf{7}(3.7 \mathrm{mg}$, 0.04%), and 8 ($3.3 \mathrm{mg}, 0.04 \%$). The cytotoxic CHCl_{3} fraction was separated on a Sephadex LH-20 column and eluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ (2:1) and produced fractions $\mathrm{E}-\mathrm{I}$. Cytotoxic fraction $\mathrm{H}(70 \mathrm{mg})$ was further purified by HPLC on a Rainin cyano-bonded phase column ($5 \mu \mathrm{~m}, 1 \times 25 \mathrm{~cm}$) using hexane-i-PrOH (17:3, $0.1 \% \mathrm{AcOH}$) to yield compound 9 ($13.2 \mathrm{mg}, 0.15 \%$).

1,8(S),30(R)-Trihydroxydotriaconta-16(Z),28(E)-diene-2,4,6,31-tetrayne (1): white powder; [$\alpha]_{\mathrm{D}}-15^{\circ}$ (c $1.56, \mathrm{CHCl}_{3}$); HRFABMS $\mathrm{m} / \mathrm{z} 479.3524$, calcd for $\mathrm{C}_{32} \mathrm{H}_{47} \mathrm{O}_{3} 479.3525$; LRCIMS (methane) $\mathrm{m} / \mathrm{z} 479\left[\mathrm{MH}^{+}\right]$ (1), 477 [$\left.\mathrm{M}^{+}-\mathrm{H}\right]$ (1), $461\left[479-\mathrm{H}_{2} \mathrm{O}\right]^{+}(1), 443$ [479$\left.2 \mathrm{H}_{2} \mathrm{O}\right]^{+}(1), 399$ [479-80]+ (5), 271 (1), 261 (1), 133 (2), 115 (1), 109 (2), 103 (2), 95 (3), 81 (8), 63(100); UV $(\mathrm{MeOH}) \lambda_{\text {max }}(\log \epsilon) 257(2.6), 242(2.8), 230(3.0), 204$ (3.5) nm; IR (film) $\nu_{\text {max }} 3294,2920,2851,2254,2118$, 1669, 1466, 1218, 1020, 967, 759, 721, $668 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.90$ ($1 \mathrm{H}, \mathrm{ddt}, \mathrm{J}=15,7,1.5$ $\mathrm{Hz}, \mathrm{H}-28), 5.58$ ($1 \mathrm{H}, \mathrm{ddt}, \mathrm{J}=15,6,1.5 \mathrm{~Hz}, \mathrm{H}-29), 5.32$ ($2 \mathrm{H}, \mathrm{dt} \mathrm{J}=9,5 \mathrm{~Hz}, \mathrm{H}-16,17$), 4.81 ($1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=6,2$, $1.5 \mathrm{~Hz}, \mathrm{H}-30), 4.40(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, \mathrm{H}-8), 4.32(2 \mathrm{H}, \mathrm{s}$, $\mathrm{H}-1), 2.54(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2 \mathrm{~Hz}, \mathrm{H}-32), 2.04(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7$ $\mathrm{Hz}, \mathrm{H}-27$), $1.99(4 \mathrm{H}, \mathrm{dt}, \mathrm{J}=7,5 \mathrm{~Hz}, \mathrm{H}-15,18), 1.69(2 \mathrm{H}$, $\mathrm{m}, \mathrm{H}-9$), $1.41(\mathrm{~m}), 1.38(\mathrm{~m}), 1.25(\mathrm{~m})$; ${ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 134.6$ (C-28), 129.9 (C-17), 129.8 (C-16), 128.2 (C-29), 83.3 (C-31), 80.5 (C-4, 5, 7), 77.5 (C-2), 74.0 (C-32), 69.7 (C-3), 68.8 (C-6), 62.7 (C-8, 30), 51.2 (C-1), 37.4 (C-9), 31.9 (C-27), 30.0-29.2 (C-11 to C-14 and C-19 to C-26), 28.8 (C-26), 27.1 (C-15), 27.0 (C-18), 25.0 (C10).

1,8(S),31(R)-Trihydroxytritriaconta-17(Z),29(E)-diene-2,4,6,32-tetrayne (2): white powder; $[\alpha]_{\mathrm{D}}-14^{\circ}$ (c $0.8, \mathrm{CHCl}_{3}$); HRCIMS (isobutane) $\mathrm{m} / \mathrm{z} 493.3681$, calcd for $\mathrm{C}_{33} \mathrm{H}_{49} \mathrm{O}_{3} 493.3681$; LRCIMS (isobutane) $\mathrm{m} / \mathrm{z} 494$ $\left[\mathrm{M}^{+}+2 \mathrm{H}\right](87), 493\left[\mathrm{MH}^{+}\right](3), 492\left[\mathrm{M}^{+}\right](4), 476[494-$ $\left.\mathrm{H}_{2} \mathrm{O}\right]^{+}(100), 474\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+}(3), 456\left[\mathrm{M}-2 \mathrm{H}_{2} \mathrm{O}\right]^{+}(2)$, 414 [494-80] (88), 285 (4), 271 (2), 133 (3), 131 (5), 109 (10), 95 (26), 81 (62); UV (MeOH) $\lambda_{\text {max }}(\log \epsilon) 256$ (2.7), 226 (3.2), 204 (23.5) nm; IR (film) $\nu_{\text {max }} 3308,2921$, 2851, 2254, 2160, 1669, 1465, 1021, 968, 759, $668 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.90(1 \mathrm{H}, \mathrm{ddt}, \mathrm{J}=15,7$, $1 \mathrm{~Hz}, \mathrm{H}-29), 5.59(1 \mathrm{H}, \mathrm{ddt}, \mathrm{J}=15,6,1 \mathrm{~Hz}, \mathrm{H}-30), 5.32$ ($2 \mathrm{H}, \mathrm{dt}, \mathrm{J}=10,6 \mathrm{~Hz}, \mathrm{H}-17,18$), 4.82 ($1 \mathrm{H}, \mathrm{ddt}, \mathrm{J}=6,2$, $1 \mathrm{~Hz}, \mathrm{H}-31), 4.41(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, \mathrm{H}-8), 4.32(2 \mathrm{H}, \mathrm{s}$, $\mathrm{H}-1), 2.55(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2 \mathrm{~Hz}, \mathrm{H}-33), 2.05(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7$ $\mathrm{Hz}, \mathrm{H}-28), 1.99(4 \mathrm{H}, \mathrm{dt}, \mathrm{J}=7,6 \mathrm{~Hz}, \mathrm{H}-16,19), 1.68(2 \mathrm{H}$, $\mathrm{q}, \mathrm{J}=7 \mathrm{~Hz}, \mathrm{H}-9), 1.41(\mathrm{~m}), 1.37(\mathrm{~m}), 1.24(\mathrm{~m}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 134.7$ (C-29), 129.9 (C-17, 18), 128.2 (C-30), 83.3 (C-32), 80.5 (C-4, 5, 7), 77.5 (C-2), 74.0 (C33), 69.7 (C-3), 68.8 (C-6), 62.8 (C-8, 31), 51.4 (C-1), 37.4
(C-9), 31.9 (C-28), 30.0-29.2 (C-11 to C-15 and C-20 to C-27), 28.8 (C-27), 27.2 (C-19), 27.0 (C-16), 25.0 (C-10).

1,8,29-Trihydroxyhentriaconta-17(Z),27(E)-diene-2,4,6,30-tetrayne (3): white powder; [$\alpha]_{D}-19^{\circ}$ (c 0.66, CHCl_{3}); HRFABMS m/z 465.3371, calcd for $\mathrm{C}_{31} \mathrm{H}_{45} \mathrm{O}_{3}$ 465.3368; LRCIMS (methane) $\mathrm{m} / \mathrm{z} 465\left[\mathrm{MH}^{+}\right]$(40), $464\left[\mathrm{M}^{+}\right]$(17), 447 [M + H $\left.-\mathrm{H}_{2} \mathrm{O}\right]^{+}$(100), $435[\mathrm{M}+\mathrm{H}$ $\left.-\mathrm{CH}_{2} \mathrm{OH}\right]^{+}$(11), 429 [447- $\left.\mathrm{H}_{2} \mathrm{O}\right]^{+}$(19), $409[\mathrm{M}+\mathrm{H}-$ $\left.\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}\right]^{+}(9), 385$ (30), 285 (10), 193 (5), 133 (3), 115 (8), 81 (9); UV (MeOH) $\lambda_{\text {max }}(\log \epsilon) 257$ (2.5), 243 (2.7), 231 (2.8), 204 (3.4) nm; IR (film) $v_{\text {max }} 3308,2919,2852,2254$, 2161, 2119, 1669, 1464, 1217, 1020, 969, 759, 721, 668 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.90(1 \mathrm{H}, \mathrm{ddt}, \mathrm{J}=$ $15,7,1.5 \mathrm{~Hz}, \mathrm{H}-27$), 5.59 (1 H , ddt, J $=15,6,1.5 \mathrm{~Hz}$, $\mathrm{H}-28), 5.33(2 \mathrm{H}, \mathrm{dt}, \mathrm{J}=11,5 \mathrm{~Hz}, \mathrm{H}-17,18)$, $4.82(1 \mathrm{H}$, ddd, J $=6,2,1.5 \mathrm{~Hz}, \mathrm{H}-29), 4.41(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, \mathrm{H}-8)$, $4.32(2 \mathrm{H}, \mathrm{s}, \mathrm{H}-1), 2.55(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2 \mathrm{~Hz}, \mathrm{H}-31), 2.04(2 \mathrm{H}$, q, J $=7 \mathrm{~Hz}, \mathrm{H}-26$), $1.99(4 \mathrm{H}, \mathrm{dt}, \mathrm{J}=7,5 \mathrm{~Hz}, \mathrm{H}-16,19)$, $1.70(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-9), 1.42(\mathrm{~m}), 1.37(\mathrm{~m}), 1.25(\mathrm{~m})$; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 134.7$ (C-27), 129.9 (C-17, 18), 128.3 (С-28), 83.3 (С-30), 80.5 (C-4, 5, 7), 77.5 (C-2), 74.0 (C31), 69.8 (C-3), 68.8 (C-6), 62.8 (C-8, 29), 51.5 (C-1), 37.5 (C-9), 31.9 (C-26), 29.7-29.2 (C-11 to C-15 and C-20 to C-24), 28.8 (C-25), 27.2 (C-16, 19), 25.0 (C-10).
1,8,39-Trihydroxyhentetraconta-23(Z),37(E)-di-ene-2,4,6,40-tetrayne (4): colorless oil; [$\alpha]_{\mathrm{D}}-10.7^{\circ}$ (c $0.013, \mathrm{CHCl}_{3}$); HRFABMS $\mathrm{m} / \mathrm{z}, 605.4919$, calcd for $\mathrm{C}_{41} \mathrm{H}_{65} \mathrm{O}_{3} 605.4933$; LRCIMS (methane) $\mathrm{m} / \mathrm{z} 605$ [MH^{+}] (1), 477 (4), 415 (2), 369 (1), 289 (4), 249 (2), 133 (1), 115 (4), 109 (5), 95 (7), 81 (6), 55 (100); UV (MeOH) $\lambda_{\text {max }}$ ($\log \epsilon$) 256 (2.8), 230 (3.1), 203 (3.6) nm; IR (film) $\nu_{\text {max }}$ 3284, 2920, 2848, 1466, 1118, 1065, 1011, 965, 722, 668 cm^{-1}; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.90(1 \mathrm{H}, \mathrm{ddt}$, J $=$ $15,7,1.5 \mathrm{~Hz}, \mathrm{H}-37$), 5.59 (1 H , ddt, J $=15,6,1.5 \mathrm{~Hz}$, $\mathrm{H}-38), 5.33(2 \mathrm{H}, \mathrm{dt}, \mathrm{J}=10,5 \mathrm{~Hz}, \mathrm{H}-23,24), 4.82(1 \mathrm{H}$, br, H-39), $4.41(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=7,6 \mathrm{~Hz}, \mathrm{H}-8), 4.33(2 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $=5 \mathrm{~Hz}, \mathrm{H}-1), 2.55(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2 \mathrm{~Hz}, \mathrm{H}-41), 2.05(2 \mathrm{H}, \mathrm{q}$, $\mathrm{J}=7 \mathrm{~Hz}, \mathrm{H}-36), 1.99(4 \mathrm{H}, \mathrm{dt}, \mathrm{J}=7,5 \mathrm{~Hz}, \mathrm{H}-22,25)$, $1.70(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-9), 1.61(\mathrm{~m}), 1.53(\mathrm{~m}), 1.39(\mathrm{~m}), 1.24(\mathrm{~m}) ;$ ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 134.7$ (C-37), 129.9 (C23, 24), 128.3 (C-38), 83.3 (C-40), 80.6 (C-4, 5, 7), 77.5 (C-2), 74.0 (C-41), 69.8 (C-3), 68.8 (C-6), 62.9 (C-39), 62.8 (C-8), 51.5 (C-1), 37.5 (C-9), 31.9 (C-36), 30.9-28.8 (C10 to $\mathrm{C}-21$ and $\mathrm{C}-26$ to $\mathrm{C}-35$), 27.2 (C-22), 27.1 (C-25).

1,8,30-Trihydroxydotriaconta-17(Z),28(E)-diene-2,4,6,15,31-pentayne (5): white powder; $[\alpha]_{D}-11.4^{\circ}$ (c $0.42, \mathrm{CHCl}_{3}$); HRCIMS (isobutane) $\mathrm{m} / \mathrm{z} 475.3214$, calcd for $\mathrm{C}_{32} \mathrm{H}_{43} \mathrm{O}_{3} 475.3212$; LRCIMS (isobutane) $\mathrm{m} / \mathrm{z} 476$ $\left[M^{+}+2 \mathrm{H}\right](17), 474\left[\mathrm{M}^{+}\right](1), 458\left[476-\mathrm{H}_{2} \mathrm{O}\right]^{+}(18)$, 440 [476-2 $\left.\mathrm{H}_{2} \mathrm{O}\right]^{+}(1), 396[476-80]^{+}$(9), 271 (2), 207 (2), 133 (3), 109 (9), 95 (28), 81 (100); UV (MeOH) $\lambda_{\text {max }}$ ($\log \epsilon$) 227 (4.0), 203 (3.7) nm; IR (film) $v_{\max } 3305,2925$, 2853, 2208, 2122, 1669, 1463, 1020, $967 \mathrm{~cm}^{-1}$; ${ }^{1}$ H NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.90(1 \mathrm{H}, \mathrm{ddt}, \mathrm{J}=15,7,1 \mathrm{~Hz}$, $\mathrm{H}-28), 5.79$ ($1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=10.5,7 \mathrm{~Hz}, \mathrm{H}-18$), 5.59 ($1 \mathrm{H}, \mathrm{ddt}$, $\mathrm{J}=15,6,1.5 \mathrm{~Hz}, \mathrm{H}-29), 5.41(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=10.5,2 \mathrm{~Hz}$, $\mathrm{H}-17), 4.82(1 \mathrm{H}, \mathrm{ddt}, \mathrm{J}=6,2,1 \mathrm{~Hz}, \mathrm{H}-30), 4.41(1 \mathrm{H}, \mathrm{t}$, $\mathrm{J}=7 \mathrm{~Hz}, \mathrm{H}-8), 4.32(2 \mathrm{H}, \mathrm{s}, \mathrm{H}-1), 2.55(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2 \mathrm{~Hz}$, $\mathrm{H}-32), 2.31(2 \mathrm{H}, \mathrm{dt}, \mathrm{J}=7,2 \mathrm{~Hz}, \mathrm{H}-14), 2.26(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=$ $7 \mathrm{~Hz}, \mathrm{H}-19), 2.05(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7 \mathrm{~Hz}, \mathrm{H}-27), 1.68(2 \mathrm{H}, \mathrm{q}$, $\mathrm{J}=7 \mathrm{~Hz}, \mathrm{H}-9), 1.51(\mathrm{~m}), 1.37(\mathrm{~m}), 1.26(\mathrm{~m}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.6$ (C-18), 134.6 (C-28), 128.3 (C-29), 109.4 (C-17), 94.5 (C-15), 83.3 (C-31), 80.6 (C-4, 5,7), 77.5 (C-16), 77.4 (C-2), 74.0 (C-32), 69.8 (C-3), 68.8 (C-6), 62.8 (C-8, 30), 51.5 (C-1), 37.5 (C-9), 32.0 (C-27),
30.0 (C-19), 29.6-25.0 (C-10 to C-13 and C-20 to C-26), 19.5 (C-14).

1,8(S),32(R)-Trihydroxytetratriaconta-19(Z),30(E)-diene-2,4,6,17,33-pentayne (6): white powder; $[\alpha]_{D}$ -10.6° (c 1.15, CHCl_{3}); HRFABMS m/ z 503.3528, calcd for $\mathrm{C}_{34} \mathrm{H}_{47} \mathrm{O}_{3} 503.3525$; LRCIMS (methane) $\mathrm{m} / \mathrm{z} 503$ $\left[\mathrm{MH}^{+}\right](59), 502\left[\mathrm{M}^{+}\right](9), 485\left[503-\mathrm{H}_{2} \mathrm{O}\right]^{+}(55), 447$ [502-55]+ (9), 370 [503 - 133] (9), 309 (4), 295 (4), 289 [370-81] ${ }^{+}(4), 271$ (2), 245 (20), 207 (5), 133 (11), 115 (100), 103 (3), 95 (27), 81 (33); UV (MeOH) $\lambda_{\text {max }}$ (log є) 227 (4.1), 202 (3.8) nm; IR (film) $v_{\max } 3299,2921,2849$, 2159, 1668, 1463, 1075, 1030, 964, $724 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H} N M R$ ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.89(1 \mathrm{H}, \mathrm{ddt}, \mathrm{J}=15.5,6,1 \mathrm{~Hz}$, H-30), 5.78 ($1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=10.5,7 \mathrm{~Hz}, \mathrm{H}-20$), 5.59 (1 H , ddt, $\mathrm{J}=15.5,6,1.5 \mathrm{~Hz}, \mathrm{H}-31), 5.41(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=10.5,2 \mathrm{~Hz}$, $\mathrm{H}-19), 4.82(1 \mathrm{H}, \mathrm{ddt}, \mathrm{J}=6,2.5,1 \mathrm{~Hz}, \mathrm{H}-32), 4.41(1 \mathrm{H}$, $\mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, \mathrm{H}-8), 4.32(2 \mathrm{H}, \mathrm{s}, \mathrm{H}-1), 2.55(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.5$ $\mathrm{Hz}, \mathrm{H}-34), 2.31(2 \mathrm{H}, \mathrm{dt}, \mathrm{J}=7,2 \mathrm{~Hz}, \mathrm{H}-16), 2.26(2 \mathrm{H}, \mathrm{q}$, $J=7 \mathrm{~Hz}, \mathrm{H}-21), 2.04(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7 \mathrm{~Hz}, \mathrm{H}-29), 1.69(2 \mathrm{H}$, $\mathrm{q}, \mathrm{J}=7 \mathrm{~Hz}, \mathrm{H}-9), 1.51(\mathrm{~m}), 1.37(\mathrm{~m}), 1.26(\mathrm{~m}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 142.6$ (C-20), 134.6 (C-30), 128.3 (C-31), 109.3 (C-19), 94.5 (C-17), 82.5 (C-33), 80.6 (C-4, 5, 7), 77.5 (C-2, 18), 74.0 (C-34), 69.8 (C-3), 68.8 (C-6), 62.8 (C-8, 32), 51.5 (C-1), 37.5 (C-9), 31.9 (C-29), 30.0 (C-21), 29.6-25.0 (C-10 to C-15 and C-22 to C-28), 19.5 (C-16).

1,32-Dihydroxytetratriaconta-19(Z),30(E)-diene-2,4,6,17,33-pentayne (7): white powder; $[\alpha]_{D}-10.5^{\circ}$ (c $0.37, \mathrm{CHCl}_{3}$); HRCIMS (isobutane) $\mathrm{m} / \mathrm{z} 487.3575$, calcd for $\mathrm{C}_{34} \mathrm{H}_{47} \mathrm{O}_{2}, 487.3576$; LRCIMS (isobutane) $\mathrm{m} / \mathrm{z} 488$ $\left[M^{+}+2 \mathrm{H}\right](100), 486\left[\mathrm{M}^{+}\right](3), 470\left[488-\mathrm{H}_{2} \mathrm{O}\right]^{+}(35)$, $452\left[488-2 \mathrm{H}_{2} \mathrm{O}\right]^{+}(1), 293$ (1), 271 (1), 173 (2), 159 (3), 145 (4), 131 (4), 109 (5), 95 (9), 81 (13); UV (MeOH) $\lambda_{\text {max }}$ $(\log \epsilon) 306$ (2.5), 227 (4.2), 203 (4.0) nm; IR (film) $\nu_{\text {max }}$ 3287, 2915, 2849, 2341, 1652, 1558, 1470, 1029, 963, 718, $668 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.90(1 \mathrm{H}$, ddt, J = 15, 6.5, $1 \mathrm{~Hz}, \mathrm{H}-30$), 5.79 ($1 \mathrm{H}, \mathrm{dt}, 10,7, \mathrm{H}-20$), 5.59 (1H, ddt, 15, 6.5, 1.5, H-31), 5.41 (1H, dt, 10, 2, H-19), 4.82 (1H, ddt, 6.5, 2, 1, H-32), 4.30 ($2 \mathrm{H}, \mathrm{s}, \mathrm{H}-1$), 2.55 (1H, d, 2, H-34), 2.31 ($2 \mathrm{H}, \mathrm{dt}, 7,2, \mathrm{H}-16$), 2.27 (2 H , $\mathrm{t}, 6, \mathrm{H}-8), 2.25(2 \mathrm{H}, \mathrm{q}, 7 \mathrm{~Hz}, \mathrm{H}-21), 2.05(2 \mathrm{H}, \mathrm{dt}, 7,6.5$, $\mathrm{H}-29), 1.51$ (m), 1.37 (m), 1.24 (m); ${ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 142.6$ (C-20), 134.6 (C-30), 128.4 (C-31), 109.4 (C-19), 94.5 (C-17), 83.3 (C-33), 82.0 (C-4, 5, 7), 77.4 (C18), 74.0 (C-34), 73.5 (C-2), 71.0 (C-3), 64.3 (C-6), 62.8 (C-32), 51.6 (C-1), 32.0 (C-29), 30.0 (C-21), 29.6-29.1 (C-10 to C-15 and C-22 to C-28), 28.8 (C-9), 19.5 (C-16), 19.3 (C-8).

1,8(S),33(R)-Trihydroxyheptatriaconta-20(Z),34-(Z)-diene-2,4,6,36-tetrayne (8): colorless oil; $[\alpha]_{D}-23.7^{\circ}$ (c $0.32, \mathrm{CHCl}_{3}$); HRFABMS m/z 549.4314, calcd for $\mathrm{C}_{37} \mathrm{H}_{57} \mathrm{O}_{3} 549.4307$; LRCIMS (methane) $\mathrm{m} / \mathrm{z} 549\left[\mathrm{MH}^{+}\right]$ (11), $548\left[\mathrm{M}^{+}\right](3), 531\left[549-\mathrm{H}_{2} \mathrm{O}\right]^{+}$(5), 513 [549 $\left.2 \mathrm{H}_{2} \mathrm{O}\right]^{+}$(3), 495 [549-3 $\left.\mathrm{H}_{2} \mathrm{O}\right]^{+}(14), 479\left[\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{3}-\right.$ $\left.\mathrm{H}_{2} \mathrm{O}\right]^{+}(66), 467\left[\mathrm{M}-\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{O}\right]^{+}(19), 461\left[\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{3}-\right.$ $\left.2 \mathrm{H}_{2} \mathrm{O}\right]^{+}$(64), 327 (4), 275 (6), 133 (20), 115 (7), 109 (52), 103 (9), 95 (74), 81 (100); UV (MeOH) $\lambda_{\max }(\log \epsilon) 255$ (2.7), 223 (4.1), 203 (3.8) nm; IR (film) $v_{\max } 3309,2924$, 2853, 1464, 1023, 721, 668, $636 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.97(1 \mathrm{H}, \mathrm{ddt}, \mathrm{J}=11.5,7,0.5 \mathrm{~Hz}, \mathrm{H}-34)$, 5.52 (1H, ddt, J = 11.5, 2.0, $0.5 \mathrm{~Hz}, \mathrm{H}-35), 5.33(2 \mathrm{H}, \mathrm{dt}$, $\mathrm{J}=9,6 \mathrm{~Hz}, \mathrm{H}-20,21), 4.66(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=7,7,0.5 \mathrm{~Hz}$, $\mathrm{H}-33), 4.41(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{H}-8), 4.33(2 \mathrm{H}, \mathrm{s}, \mathrm{H}-1)$, 3.12 (1H, d, J $=2 \mathrm{~Hz}, \mathrm{H}-37$), $1.99(4 \mathrm{H}, \mathrm{dt}, \mathrm{J}=7,6 \mathrm{~Hz}$, $\mathrm{H}-19,22$), 1.69 (2H,dt, J $=7,6.5 \mathrm{~Hz}, \mathrm{H}-9), 1.62(2 \mathrm{H}$,
m, H-32), 1.51 (m), 1.42 (m), $1.24(\mathrm{~m}) ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 147.4(\mathrm{C}-34), 129.9(\mathrm{C}-20,21), 108.9(\mathrm{C}-$ 35), 82.8 (C-37), 80.6 (C-4, 5, 7), 79.5 (C-36), 77.6 (C-2), 70.1 (C-33), 69.8 (C-3), 68.8 (C-6), 62.9 (C-8), 51.5 (C1), 37.5 (C-9), 37.0 (C-32), 36.5 (C-31), 30.2-28.7 (C-11 to $\mathrm{C}-18$ and $\mathrm{C}-23$ to $\mathrm{C}-30)$, 27.1 (C-19), 26.7 (C-22), 25.0 (C-10).

31(R)-Hydroxytritriaconta-4(Z),15(Z),29(E)-triene-2,32-diynoic acid (9): col orless oil; [$\alpha]_{\mathrm{D}}-12.9^{\circ}$ (c 1.20, CHCl_{3}); negative HRFABMS of methyl ester of $9 \mathrm{~m} / \mathrm{z}$ 509.3971, calcd for $\mathrm{C}_{34} \mathrm{H}_{53} \mathrm{O}_{3} 509.3995$; positive FABMS of $9 \mathrm{~m} / \mathrm{z} 479[\mathrm{M}-\mathrm{OH}]^{+}$(7), $289\left[\mathbf{A}+11 \mathrm{CH}_{2}+\right.$ $\left.\mathrm{HC}=\mathrm{CHCH}_{2}\right]^{+}(3)$; positive FABMS of methyl ester of $9 \mathrm{~m} / \mathrm{z} 493[\mathrm{M} \mathrm{-} \mathrm{OH}]^{+}$(9), $479\left[\mathrm{M}-\mathrm{OCH}_{3}\right]^{+}(7), 433[\mathrm{M}$ $\left.-\mathrm{COOCH}_{3}-\mathrm{H}_{2} \mathrm{O}\right]^{+}(3), 289\left[\mathbf{A}+11 \mathrm{CH}_{2}+\mathrm{HC}=\right.$ $\left.\mathrm{CHCH}_{2}\right]^{+}(17) ; \mathrm{UV}(\mathrm{MeOH}) \lambda_{\max }(\log \epsilon) 247(4.0), 241$ (4.0), 203 (4.0) nm; IR (film) $v_{\max } 3400,3309,3004,2924$, 2853, 2212, 1695, 1682, 1464, 1402, 1369, 1276, 1087, 1009, 968, 722, 660, $587 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 6.24(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=10.5,8 \mathrm{~Hz}, \mathrm{H}-5), 5.89(1 \mathrm{H}$, $\mathrm{dt}, \mathrm{J}=15.5,6.5 \mathrm{~Hz}, \mathrm{H}-29), 5.58(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=15.5,6.5$ $\mathrm{Hz}, \mathrm{H}-30), 5.53(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.5 \mathrm{~Hz}, \mathrm{H}-4), 5.32(2 \mathrm{H}, \mathrm{dt}$, $\mathrm{J}=9,5.5 \mathrm{~Hz}, \mathrm{H}-15,16), 4.83(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-31), 2.54(1 \mathrm{H}$, $\mathrm{d}, \mathrm{J}=2 \mathrm{~Hz}, \mathrm{H}-33), 2.35(2 \mathrm{H}, \mathrm{dt}, \mathrm{J}=8,7 \mathrm{~Hz}, \mathrm{H}-6), 2.04$ $(2 \mathrm{H}, \mathrm{dt}, \mathrm{J}=7,6.5 \mathrm{~Hz}, \mathrm{H}-28), 1.99(4 \mathrm{H}, \mathrm{dt}, \mathrm{J}=7,6.5$ Hz, H-14, 17), 1.39 (m), 1.25 (m); ${ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 158.0(\mathrm{C}-1), 152.0(\mathrm{C}-5), 134.7(\mathrm{C}-29), 129.9$ (C-15, 16), 128.2 (C-30), 106.5 (C-4), 84.7 (C-3), 84.6 (C2), 83.2 (C-32), 74.1 (C-33), 62.8 (C-31), 31.9 (C-28), 31.0 (C-6), 30.0-28.6 (C-7 to C-13, and C-18 to C-27), 27.2 (C-14, 17).

MTPA Esters of Compounds 1, 2, 6, 8, and 9. The polyacetylene ($2-6 \mathrm{mg}$) was dissolved in distilled pyridine (0.5 mL). Then, $4 \times$ molar excess of α-methoxy- α (trifluoromethyl)phenylacetyl chloride (MTPA-CI) and a catalytic amount (few granules) of 4-(dimethylamino)pyridine were added to the solution. The mixture was stirred at room temperature overnight under argon. The progress of the reaction was monitored by TLC (cyanobonded phase, hexane-i-PrOH, 17:3). The reaction was quenched by removal of solvent in vacuo, and the residue obtained was redissolved in 0.5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and applied to a small cyano-bonded phase column (2 $\times 4 \mathrm{~cm}$) equilibrated with hexane. Vacuum-liquid chromatography, eluted by hexane (40 mL), gave pure Mosher's ester derivatives. B oth R-and S-esters were prepared for each compound and characterized by 500 $\mathrm{MHz}{ }^{1} \mathrm{H}$ and ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY NMR spectral data.

Ozonolysis of Compound 1. Ozone $\left(\mathrm{O}_{3}\right)$ was introduced for $5 \mathrm{~min}\left(-78{ }^{\circ} \mathrm{C}\right)$ to a $10 \mathrm{~mL} \mathrm{CH} 2 \mathrm{Cl}_{2}$ solution of 1 (10 mg). After removal of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the reaction products were dissolved in 10 mL of distilled $\mathrm{H}_{2} \mathrm{O}$, followed by addition of six drops of a 30% solution of $\mathrm{H}_{2} \mathrm{O}_{2}$. The mixture was brought to reflux for 1 h . After it was cooled to room temperature, the reaction mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 15 \mathrm{~mL})$. The combined organic extract was concentrated to about 5 mL and then was treated with freshly generated $\mathrm{CH}_{2} \mathrm{~N}_{2}$ at room temperature for 1 h . Removal of solvent gave the methyl ester product.

Antitumor Testing Data of 1. The tumor cell line subpanels are identified as follows: 1 (leukemia); II (lung, non small-cell); III (colon); IV (CNS); V (melanoma); VI (ovarian); VII (renal); VIII (prostate); IX (breast). The subpanel and individual cell line identi-
fiers are given, along with the corresponding negative $\log _{10} \mathrm{Gl}_{50}, \mathrm{TGI}$, and LC_{50} values, respectively. The results for compound $\mathbf{1}$ (average of quadruplicate tests) are representative of the series: [I], CCRF-CEM (6.77, $6.11,4.47)$, HL-60 (TB) (7.08, 5.44, 4.60), K-562 (6.43, 5.64, 4.43), MOLT-4 (6.68, 6.09, 4.17), RPMI-8226 (7.51, $6.00,4.00)$, SR ($6.74,5.49,4.00$); [II], A549/ATCC (6.47, 5.24, 4.32), EKVX (6.06, 5.62, 5.17), HOP-62 (5.80, 5.27, 4.12), HOP-92 (6.49, 5.92, 4.82), NCI-H226 (6.22, 5.72, 5.09), NCI-H23 (6.59, 5.89, 4.85), NCI-H322M (5.48, 4.92, 4.24), NCI-H460 (6.46, 5.74, 4.37), NCI-H522 (6.82, 6.42, 6.19); [III], COLO 205 (6.70, 6.38, 5.64), HCC-2998 (6.59, 6.16, 5.66), HCT-116 (6.89, 6.18, 5.46), HCT-15 (6.39, 5.68, 5.14), HT29 (6.44, 5.89, 5.44), KM 12 (6.77, $6.42,5.96$), SW-620 (6.47, 5.89, 5.03); [IV], SF-268 (6.46, $5.41,4.89)$, SF-295 (5.54, 5.02, 4.29), SF-539 (5.96, 5.48, 4.72), SNB-19 (5.47, 4.92, 4.28), SNB-75 (5.70, 5.18, 4.80), U251 (6.09, 5.66, 5.28); [V], LOX I MVI (6.85, 6.44, 5.10), MALME-3M ($6.60,6.19,5.72$), M 14 ($6.80,6.09$, 5.46), SK-MEL-2 (6.60, 6.05, 5.11), SK-MEL-28 (6.15, 5.64, 4.92), SK-MEL-5 (7.14, 6.70, 6.32), UACC-257 ($6.29,5.68,5.09$), UACC-62 (6.64, 6.19, 5.04); [VI], IGROV1 (6.31, 5.74, 5.09), OVCAR-3 (6.43, 5.82, 5.28), OVCAR-4 (6.07, 5.20, 4.42), OVCAR-5 (5.35, 4.92, 4.46), OVCAR-8 (6.89, 6.07, 4.66), SK-OV-3 (5.55, 5.10, 4.43); [VII], 786-0 (6.54, 5.96, 5.40), A498 (6.28, 5.80, 5.28), ACHN (6.11, 5.14, 4.49), CAKI-1 (6.60, 6.17, 5.47), RXF393 (6.47, 5.89, 4.74), SN12C (5.85, 4.96, 4.49), TK-10 (6.19, 5.68, 4.96), UO-31 (5.89, 5.57, 5.26); [VIII], PC-3 (6.72, 5.96, 5.00), DU-145 (5.85, 5.26, 4.74); [IX], MCF-7 (5.80, 5.22, 4.59), MCF7/ADR-RES (6.52, 5.29, 4.49), MDA-MB-231/ATCC ($6.64,6.22,5.04$), HS 578T (5.62, 5.08, 4.24), MDA-MB-435 (6.77, 6.08, 5.35), MDA-N ($6.62,5.51,5.07$), BT-549 (6.10, 5.62, 4.96), T-47D (5.82, 5.14, 4.32).

Acknowledgments. We thank D. J. Newman for coordinating collections, Coral Reef Foundation for the
sponge collection, T. McCloud for extractions, L. Pannell for mass spectral data, A. Monks, D. Scudiero, R. Shoemaker, and T. Prather for antitumor screening, and D. Torok for assistance with ozonolysis.

References and Notes

(1) Nakamura, H.; Deng, S.; K obayashi, J .; Ohizumi, Y.; Tomotake, Y.; Matsuzaki, T.; Hirata, Y. Tetrahedron Lett. 1987, 28, 621624.
(2) Notario, G.; Piccialli, V.; Sica, D.; Pronzato, R. J . Nat. Prod. 1992, 55, 773-779.
(3) Engel, M.; Bachmann, M.; Schroeder, H. C.; Rinkevich, B.; Kljajic, Z.; Uhlenbruck, G.; Mueller, W. E. G. Biochimie 1992, 74, 527-537.
(4) Monks, A.; Scudiero, D.; Skehan, P.; Shoemaker, R.; Paull, K.; Vistica, D.; Hose, C.; Langley, J .; Cronise, P.; Vaigro-Wolff, A.; Gray-Goodrich, M.; Campbell, H.; Boyd, M. J . Natl. Cancer Inst. 1991, 83, 757-766.
(5) Boyd, M. R. In Cancer: Principles and Practice of Oncology Updates; Devita, V. T., J r., Hellman, S., Rosenberg, S. A., Eds.; Lippincott: Philadelphia, 1989; Vol. 3, No. 10, pp 1-12.
(6) Boyd, M. R. In Current Therapy in Oncology; Niederhuber, J. E., Ed.; B. C. Decker, Inc.: Philadelphia, 1993; pp 11-22.
(7) Boyd, M. R.; Paull, K. Drug. Dev. Res. 1995, 34, 91-109.
(8) Van Wagenen, B. C.; Larsen, R.; Cardellina, J . H., II; Randazzo, D.; Lidert, Z. C. Swithenbank, C. J . Org. Chem. 1993, 58, 335337.
(9) Silverstein, R. M.; Bassler, G. C.; Morrill, T. C. Spectrometric Identification of Organic Compounds; J ohn Wiley and Sons: New York, 1981; p 345.
(10) Breitmaier, E.; Voelter, W. Carbon-13 NMR Spectroscopy; VCH: New York, 1990; p 192.
(11) Ohtani, I.; Kusumi, T.; Kashman, Y,.; Kakisawa, H. J . Org. Chem. 1991, 56, 1296-1298.
(12) Bernart, M. W.; Hallock, Y. F.; Cardellina, J. H., II; Boyd, M. R. Tetrahedron Lett. 1994, 993-994.
(13) Guo, Y.; Gavagnin, M.; Trivellone, E.; Cimino, G. Tetrahedron 1994, 50, 13261-13268.
(14) Li, H.-Y.; Matsunaga, S.; Fusetani, N. J. Nat. Prod. 1994, 57, 1464-1467.
(15) Rinehart, K. L.; Tachibana, K. J . Nat. Prod. 1995, 58, 344-358.
(16) Hallock, Y. F.; Cardellina, J. H., II; Balaschak, M. S.; Alexander, M. R.; Prather, T. R.; Shomaker, R. H.; Boyd, M. R. J . Nat. Prod. 1995, 55, 1801-1807.
(17) Dai, J.-R.; Hallock, Y. F.; Cardellina, J. H., II; Boyd, M. R. J. Nat. Prod. 1996, 59, 88-89.
NP960366I

[^0]: ${ }^{\otimes}$ Abstract published in AdvanceACS Abstracts, September 1, 1996

